N18/4/SPEXS/HP2/ENG/TZ0/XX/M

Markscheme

November 2018

Sports, exercise and health science

Higher level

Paper 2

19 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

C	Question		Answers	Notes	Total
1.	а	i	gymnasts with high training level \checkmark	Both gymnast and high required for [1] mark.	1
1.	а	ii	160–140 ✓ =20 «cm» ✓	Accept the subtraction in a different order. Accept correct calculation if (a)(i) is incorrect.	2
1.	а	iii	children who regularly participate in sport perform better on standing broad jump ✓ gymnasts perform better than children from other sports across all participation levels ✓ A high level/ >5hr per week of training appeared to have a significant effect on standing broad jump performance in every sport when compared to the other 2 groups/ the greater the training the greater the effect√	Accept other reasonable hypothesis.	2
1.	а	iv	low to moderate training level group did not show «statistically» <u>significant</u> results \checkmark moderate and high training level group did show «statistically» significant_results/ showed they were significantly different to 95% \checkmark low and high training level group did show «statistically» <u>significant</u> results/ showed they were significantly different to 99% \checkmark	Accept response if "significant" is mentioned once but implied in the rest of the answers. Eg the low to moderate training level did not show significant results but the moderate and high training level group and the low and high training level group did.	3
1.	b	i	vertical jump/Sargent test √	Accept valid tests eg Wingate, Margaria-Kalamen, 1RM or 3RM leg press, leg dynamometer.	1

1.

2.	а	14 «points» ✓		1
2.	b	15–5 ✓ =10 «points» ✓	Accept the subtraction in a different order.	2
2.	С	Non-linear pedagogy/variable practice yields stronger learning outcomes because: individual differences are taken into consideration when teaching \checkmark there is high level of connectivity between athlete and coach that develops a deeper understanding of the individual \checkmark learning is process oriented and therefore the learner understands how the movement fits in the larger programme \checkmark <i>Practicing in drill model creates improved retention because:</i> the motor programmes are developed and solidified \checkmark		3 max

3.	а		elasticity ✓		1
3.	b	i	<i>Origin</i> : ilium ✓ <i>Insertion</i> : tibia «tibial tuberosity» ✓		2
3.	b	ii	tendons connect muscles to bones ✓ ligaments connect bones to bones ✓ ligaments and tendons stabilize joints ✓ tendons enable flexion and/ or extension of the joint✓		2 max
3.	с		cycling produces higher maximal oxygen consumption/VO ₂ max values than arm ergometry \checkmark	Accept in the converse.	1
3.	d		Gases/O₂ move from a high to low partial pressure / concentration gradient√ Oxygen partial pressure is higher in the lungs than in the capillary OR oxygen/O₂ moves from the lungs/alveoli to the pulmonary capillaries ✓ Gases/O₂ diffuse across the membranes / into blood✓ The capillary and alveoli walls are 1 cell thick <which assists="" high="" in="" of<br="" rate="" the="">diffusion>✓ A large surface area increases diffusion rate✓ the amount and rate of gas exchange that occurs across the membrane depends on the partial pressure of O₂, the thickness of the wall and the surface area <which is Fick's Law>✓ <98%> oxygen combines with hemoglobin <to form="" oxyemoglobin="">✓</to></which </which>		4 max

3.	e	i	secreted by endocrine glands «typically in short bursts but sometimes over longer period of time» \checkmark	
			communicate the regulation of «short term or long term» bodily functions \checkmark	2 max
			specific to their receptor/target site \checkmark	
			most are carried in the blood \checkmark	
3.	е	ii	regulated through a «negative» feedback loop mechanism \checkmark	
			regulated by signaling from the nervous system «adrenaline» \checkmark	2 max
			regulated by the chemical changes in the blood «insulin» \checkmark	

4.	а	changes the electrical/neural impulse into a chemical stimulus at the motor end plate	
		OR	
		ACh is released when an action potential/nerve arrives at the motor end plate \checkmark	
		ACh binds to post synaptic receptors √	2 max
		increases membrane permeability to sodium ions/Na⁺ ✓	
		which causes Ca ⁺⁺ to be released <into cell="" muscle="" the=""> \checkmark</into>	
		ACh is broken down < by cholinesterase> to prevent continual muscle stimulation√	
4.	b	Type I has a high density of capillaries and mitochondria ✓	
		high capillary density allows for increased oxygenation ✓	
		high mitochondrial density allows for increased use of oxygen	2 max
		OR	

			 high mitochondrial density allows for use of aerobic respiration «producing high amounts of ATP» ✓ both contribute to activities that require prolonged energy supply OR increases fatigue resistance ✓ 		
4.	c		 in diagram A the centre of mass/COM is perpendicular to the contact point on the beam/ √ in diagram B the centre of mass/COM shifts to the left «of the beam» √ in order for the COM to remain above «the beam» the gymnast needs to move her body in line above the beam OR e.g the gymnast needs to move her legs further to the right in order to compensate for the torso moving to the left √ in diagram B the gymnast could lower their COM OR e.g by moving into a tucked position above the beam √ 		3 max
4.	d	i	A: air resistance \checkmark B: ground reaction force \checkmark C: friction \checkmark	2 correct for [1] mark 3 correct for [2] marks	2 max
4.	e		wave drag can be reduced by avoiding motion at the interface between air and water ✓ swimming underwater for as long as is allowed at the start of a race ✓ by using wave limiting lane ropes√		2

5.	а	sensory: receiving sensory impulses ✓ association: interpreting and storing input/initiating a response ✓ motor: transmitting impulses to effectors ✓	2 max
5.	b	Strengths: the identification of life-threatening conditions such as risk of sudden cardiac death, connective tissue disorder ✓ the potential to predict susceptibility to injury and so reduce risk/improve safety for an individual athlete ✓	
		 the possibility of benefits from pre-selection for more suitable sporting activities ✓ <i>Limitations:</i> ethical implications of involuntary exclusion from, or discrimination in, one or more sports ✓ ethical implications of discrimination beyond sport, for example, in employment ✓ may encourage application of gene modification to improve athletic performance ✓ 	5 max

- 8 -

Section B

Question		on	Answers	Notes	Total
6.	а		glucose and oxygen are used to make ATP using aerobic respiration \checkmark		
			if the blood has low level of glucose or oxygen mental state can be altered negatively		
			OR		3 max
			without glucose or oxygen, the person may experience dizziness or convulsions \checkmark		0 max
			glucose storage in the brain is limited \checkmark		
			glucose moves rapidly into the brain cells \checkmark		
6.	b		separates the relevant information from the irrelevant/noise information	Award [2 max] only if no example is	
			OR	provided.	
			only relevant information is passed to the short-term memory \checkmark		
			an athlete concentrates on a specific cue or stimulus such as the ball/position of player and excludes the others such as the other players/cheering crowd \checkmark		3 max
			can be improved by learning through past experience and interaction with long-term memory $\boldsymbol{\checkmark}$		
			operates in the short-term sensory store \checkmark		
6.	С	i	motor programme is a set of movements stored as a whole in the memory «regardless of whether feedback is used in their execution» OR consists of an executive programme and subroutines√		1
6.	с	ii	practice of the motor programme/subroutines for a jump/gymnastic routine improves proficiency ✓	Accept any valid example that refers to a gymnastics routine.	2 max

		improved proficiency reduces executive programmes to subroutines as the movement has become more fluid ✓ this results in opportunity to practice more complex motor programmes such as a hand spring ✓		
6.	d	Genetic factors: a combination of height and flexibility allows for the optimal stride length and strength ✓ an athlete with more slow twitch/type I muscle fibres does better in long distance running ✓ an athlete with a higher lung capacity has an advantage in long distance running ✓ mental toughness/resilience enables runners to endure longer practices/training resulting in improvement in performance ✓ Environmental factors: training maximizes the likelihood of obtaining a performance level with a genetically controlled ceiling ✓ balanced diet/proper nutrition high in «low glycemic index» carbohydrates are best for an endurance athlete ✓ technological aids «such as timing equipment» can help improve pacing and performance ✓ altitude training can improve endurance performance at sea level ✓	Award [2 max] for a list, [3 max] per factor.	5 max

		- -	NT0/4/SPEAS/IIPZ/ENG	/120/77/101
6.	e	during «approximately» the first minute all energy systems will be working ✓ during an 800m run, energy systems do not respond in a sequential manner ✓ ATP-CP system: ATP production is from the breakdown of phosphocreatine <anaerobically> during</anaerobically>		
		initial seconds of activity \checkmark 1 PC = 1 ATP \checkmark may contribute at other times of rapid change in energy demand <as a<br="" as="" long="">steady state is found where the athlete settles into a pace> such as at the end of the race \checkmark</as>		
		can only last for 10-15 seconds/short burst \checkmark Lactic Acid System: partial breakdown of glucose anaerobically to produce ATP \checkmark 1 glucose molecule = <net> 2ATP \checkmark</net>	Award [3 max] for each energy system and [5 max] if only 2 energy systems	6 max
		will dominate after the ATP-PC system up to 1-2 minutes <while aerobic="" fully="" functional="" gets="" system="" the=""> ✓ The lactic acid system will dominate at other times where effort increases towards 100% such as during the final sprint ✓</while>	are discussed	

100% such as during the final sprint ✓		
Aerobic System: The aerobic system will dominate from approx. 1-2 minutes as the runner settles into their race pace \checkmark		
1 glucose molecule = 38 ATP with the aerobic system \checkmark		
Complete breakdown of glucose molecule in the presence of oxygen \checkmark		

7.	a	Cardiovascular drift is an increase in heart rate during prolonged exercise <despite effort="" remaining="" same="" the="">√</despite>	
		during prolonged exercise there is an increase in core temperature \checkmark	3 max
		the rise in core temperature causes redistribution of blood to the periphery in order to cool \checkmark	

		the blood volume redistribution causes the heart to work harder in order to maintain muscle blood flow / energy demands√ blood flow to skin increases and water is lost via sweating √ prolonged cooling/sweating causes a decrease in blood volume / increase in viscosity√		
		reduction in venous return/stroke volume causes the heart rate to increase to maintain cardiac output \checkmark		
7.	b	Location: located «in the brain» below the hypothalamus ✓ Function: main endocrine gland influencing other glands ✓ secretes hormones OR ADH/GH/TSH/ACTH/oxytocin secretion ✓ responsible for homeostasis OR regulates a wide range of bodily functions «growth», «water retention», «temperature» ✓		3 max
7.	С	ventilation is «chemically» regulated by blood acidity levels/low pH ✓ blood acidity levels increase/pH drops due to an increase in carbon dioxide levels ✓ blood acidity levels are detected by chemoreceptors ✓	Accept appropriately labelled diagram.	3 max

		medulla oblongata/ANS/respiratory control centre receive information from receptors ✓ increased blood acidity «and information from the proprioceptors» increases the		
		depth / rate of ventilation 🗸		
7.	d	depletion of muscle and liver glycogen reserves reduces energy source for ATP production $\boldsymbol{\checkmark}$	Award [2 max] for a list.	
		reduction in Ca ⁺⁺ release reduces muscle ability to perform muscle contraction \checkmark		
		depletion of acetylcholine decreases effectiveness of muscle contraction \checkmark		
		«muscles contain approximately 70% water» dehydration decreases effectiveness of waste product removal \checkmark		5 max
		electrolyte loss causes decreased nerve function and can cause cramping \checkmark		
		overheating causes decreased muscle function as enzymes work best at normal body temperature conditions \checkmark		
		increased peripheral fatigue takes place with unusually high intensity/lower VO_2max \checkmark		

6 max

7.	е	Post-exercise oxygen consumption/EPOC/oxygen debt takes place because there is a need for:	
		breathing remains elevated until recovery is complete \checkmark	
		EPOC is paying back the oxygen deficit during the initial energy demands achieved by the anaerobic systems \checkmark	
		reformation of phosphocreatine \checkmark	
		replenishment of myoglobin stores 🗸	
		removal of lactic acid ✓	
		replenishment of glycogen stores «up to 24 hours» ✓	
		a highly trained aerobic athlete returns to a steady state quicker than untrained	
		OR	

|--|

8.	а	the model provides support to athletes and coaches to improve performance \checkmark	
		addresses mechanical factors that affect performance \checkmark	
		suggests that there is a hierarchy of factors on which successful performance is based \checkmark	3 max
		factors that can be considered are speed principles/force principles/coordination principles/specific performance principles ✓	

8.	b		fibrous/synarthrosis cartilaginous/amphiarthrosis synovial/diarthrosis	no movement slight movement freely movable	✓ ✓ ✓			3
8.	с	i	inflammatory reactions in musc damage/overstretching/overtrai The pain felt in the muscle 24–7	ning 🗸				1
8.	С	ii	undergo prior eccentric exercise start training at a low intensity v gradual increase of the intensity	/				2 max
8.	d		a tucked body position that deciding ✓ decreased opposing wind decreased opposing wind decrease clothing such as tight apparel w equipment for cycling such as a decrease drag ✓ avoidance of turbulent air/draftin drag ✓ shaving/waxing skin has a posit lower speed decreases drag ✓	eases drag ✓ ill decrease drag ✓ ppropriately design ng/being behind the	ed he	lmet and bicycle will te in front decreases	Award [2 max] for a list.	5 max

8.	e	sodium ions/Na ⁺ enter the muscle and change the polarization in the myofibril \checkmark the sarcoplasmic reticulum releases calcium ions \checkmark calcium ions bind to troponin \checkmark	
		Tropomyosin/troponin complex exposes the binding site «on actin» ✓ myosin «head» creates a cross-bridge with the actin ✓ power stroke takes place ✓ myosin releases actin if new ATP appears ✓	6 max
		myosin head reattached further down the actin filament repeating the cycle < called the ratchet mechanism>✓ process goes on until acetylcholine-esterase breaks the acetylcholine down ✓	

9.	a	from the right ventricle blood travels «through pulmonary valve» into <u>pulmonary</u> <u>artery</u> \checkmark from pulmonary artery blood travels to the lungs «gets oxygenated» and back to the heart via <u>pulmonary vein</u> \checkmark from pulmonary vein blood enters the <u>left atrium</u> \checkmark from left atrium blood travels to <u>left ventricle</u> «via bicuspid valve» \checkmark					Accept a labelled diagram.	3 max
9.	b	stroke volume resting heart rate <maximal>cardiac output For a set task at submaxima trained√ and HR will be higher in untr</maximal>		trained higher lower higher be the same	✓ ✓ ✓ e but SV	will be higher in		3

Award [1 max] if not drawn. 9. the player who has possession \checkmark С Award [1 max] if not in sequential order. the location (in the field of play) for a change in possession \checkmark Accept any appropriate example. the player who gains possession \checkmark the method of change in possession (for example, tackle or interception) \checkmark eg Midfielder changes the speed and A midfielder direction to move \rightarrow moves closer to the penalty box √ past a defender √ 3 max A midfielder has a soccer ball 🗸 A midfielder passes the ball to a forward √ A forward aims and shoots √

5 max

9.	d	the relationship can be seen as a J curve \checkmark	Award [2 max] for a list
		highly-trained athletes are more susceptible to infections than their sedentary peers \checkmark	
		highly-trained athletes have lower leucocyte numbers caused by the stress of the exercise \checkmark	
		highly trained athletes can experience inflammation caused by muscle damage \checkmark	
		athletes have greater exposure to airborne bacteria and viruses because of an increased rate and depth of breathing \checkmark	

moderate exercise, however, is associated with reduced susceptibility to

infection \checkmark

– 18 –

9.	e	 psychological refractory period/PRP is the increase in reaction time to a second stimulus caused when the second stimulus has been delivered while the performer is responding to the first stimulus OR it is the time delay in reaction time caused by the arrival of a second stimulus before the first is processed ✓ this is believed to take place due to brain processing information on a single track/using the single channel mechanism ✓ in sports you can use PRP as an advantage by introducing a dummy stimulus before the real movement ✓ 	Award [2 max] for an annotated diagram of the single channel hypothesis for mark points 1 and 2. Award 4 [max] if only strengths or limitations provided Award [4 max] if no example given	
		strengths: can be used to help a performer have greater chances of success eg pretending to pass / run one direction then quickly changing to pass / run the other way \checkmark provides a performer with a greater range of options in their play \checkmark external noise eg: other players calling, or crowd noise can enhance the effectiveness of the PRP \checkmark the more options that a player has will increase the reaction time to the stimulus <hick's law=""> \checkmark</hick's>		6 ma
		limitations: if a performer uses it too often, they will become predictable and this limits success√ PRP may be reduced by anticipation/early cue detection / effective coach analysis / practicing «open» skills √ anxiety might make the performer get the timing wrong and thus the PRP is not effective √		